

SHERRIER CE PRIMARY SCIENCE SKILLS PROGRESSION

Science investigation skills progression

Year	Ideas and Evidence in Science				
FS	Can recognise that scientists find out about scientific ideas by asking questions and using their senses to find out.				
1	Can recognise that scientists find out about scientific ideas by asking questions and testing them.				
2	Can recognise that scientists collect evidence by making observations and measurements in order to answer a question. How many arms does				
	an octopus have? What can you remember?				
3	Can recognise why it is important to collect evidence by making observations and measurements to answer a question, and that science has				
	made our lived better.				
4	Can recognise that scientific ideas are based on evidence, have made our lives better and that there is some risk in science – How does water				
5	flow?				
	Can describe how experimental evidence and creative thinking are combined to provide scientific explanations, that has changed over time				
6	Can describe how experimental evidence and creative thinking are combined to provide scientific explanations, that change over time and has				
	both positive and negative effects.				
	Vocabulary/Asking Questions and Enquiry				
FS	Can talk about why things happen and how things work in their familiar world.				
	Can ask questions to find out more about their familiar world. E.g. Are all leaves the same? What happens when I fall asleep? Which animals				
	are nocturnal/diurnal? Where is the warmest place in our classroom? Can I fly like a bird?				
1	Can ask simple questions about the world around us and make simple and, with teacher guidance, recognise that they can be answered using				
	different types of enquiry. What is the lifecycle of a ladybird/caterpillar?				
2	Can ask simple questions to find out about the world around us and make simple suggestions about the different types of enquiry that could be				
	used to collect evidence and answer a question - What can you remember?				
3	Is it safe to eat? Are mushrooms deadly? Why do shadows change – not done it yet.				
4	Can turn existing scientific ideas into a question form that can be investigated and begin to plan different types of scientific enquiries, including				
	recognising and controlling variables with teacher guidance Why does it flood?				
5	Can form scientific questions for enquiry based on scientific ideas/concepts and recognise which can be investigated and those which are				
	theoretical. Plan different types of enquiries to answer questions, including identifying and controlling variables – Why do planets have craters?				
6	Can explore scientific ideas/concepts and form clear enquiry questions about scientific phenomena, recognising which can be investigated and				
	those which are theoretical. Select and plan the most appropriate types of enquiry to answer questions, including identifying and controlling				
	variables, where necessary.				
	How does blood flow? What's in blood?				
	Predicting and Hypothesising				

FS	With teacher guidance can think about what might happen and make a simple prediction, I think that the ice will melt quickestI think I will						
	not be able to flyI think I will be able to rescue I think my bean will grow well						
1	Can make a simple prediction, 'I think'How wild is the wind?						
2	Can make a prediction with a simple reason – all investigations – How does it move?						
3	Can make a prediction, giving a reason – all investigations – What are sunglasses for?						
4	Can make predictions with a reason and can relate it back to everyday living- Will it erupt?						
5	Can hypothesise, considering scientific ideas and use knowledge of a similar everyday experience Do all solids dissolve?						
6	Can hypothesise, giving a reason which is based on scientific concepts and uses knowledge of prior learning or everyday experiences applied a new situation.						
	Planning a fair test						
FS	With teacher guidance can carry out a simple test and begin to recognise unfairness in a test. Eg size of ice cube has to be the same, power of hairdryer needs to be the same						
1	Can plan a simple test, guided by the teacher. Can recognise unfairness and what is being changed in a test. Do pine cones know it is raining?						
2	Can make a simple plan for a test within a framework provided by the teacher. Can identify what is being changed, measured and a variable that needs to stay the same.						
	What shape is a bubble? How does it feel? What can our hands do? <mark>Can you find the treasure</mark>						
3	Is it safe to eat? Are mushrooms deadly? Do plants have legs? – not done yet.						
4	Can create a clear plan for and identify a fair test where only one variable will be changed – Are all liquids runny?						
5	Can decide on an appropriate way to collect data to answer a question and with guidance, create a clear plan which identifies the independent, dependent and control variables – How do animals stay warm?						
6	Can identify and plan an appropriate approach to answer a scientific question, identifying clear independent, dependent and control variables - Why do birds have different beaks? Can you see through it? What can your heart rate tell you?						
	Observing and measuring						
FS	I can talk about what I observe using my senses and I can talk about the equipment I have used. Can you be a superhero? Can you be the captain of a boat?						
1	Can begin to observe closely using simple equipment provided and measure in non-standard units. For example, compare length, area and volumes visually, mass by feel, temperature by touch, time by clapping or ordering, sound, light force using senses. – What's on your wellies?						
2	Can use simple equipment provided to make observations and measurements related to the test. What does friction do? What shape is a bubble?						
3	Is it safe to eat? Are mushrooms deadly? What are sunglasses for? Why are trees tall? - not done yet.						
4	Can select suitable equipment for a test and make a series of accurate observation and measurements which are adequate – Will it erupt?						

5	Can select apparatus for a range of tests and use effectively, making a series of systematic observations, measurements and comparisons					
	Which materials conduct heat? - Can recognise patterns and begin to repeat observations and measurements, offering simple explanations for					
	any differences found – <mark>How do animals keep warm?</mark>					
6	Can select the appropriate equipment for a range of tests, making systematic observations, measurements (including appropriate units) and					
	comparisons.					
	Can recognise patterns and repeat observations and measurements, offering possible explanations for any differences found.					
	Investigating					
FS	Can perform simple tests with adult support as a class or small groups. Which food is sweet/sour - Mr Greedy taste test? Which material is best					
	to build a house for the 3 pigs? What does a bean need to grow?					
1	Can perform simple tests with support. How wild is the wind?					
2	Can perform simple tests.					
	What shape is a bubble? Which stuff is stickier? What can our hands do?					
3	Is it safe to eat? What are sunglasses for?					
4	Can set up a simple practical enquiry and consider a fair test – Why did Vikings dye their clothes?					
5	Can set up practical enquiries and use results to begin to set up comparative and fair tests – What do pulleys do?					
6	Can set up practical enquiries and use scientific knowledge to plan and set up fair tests - Why do birds have different beaks? Can you see					
	through it? What can your heart rate tell you?					
	Preparing and recording results					
FS	I can talk about and record my findings with adult support and draw pictures of my observations.					
1	Can describe simple features, observations and measurements and record in a variety of simple ways, e.g. pictures, words, provided tables.					
	Does it snow in Summer?					
2	Can describe observations in a variety of ways including tables, drawings, bar charts and through scientific vocabulary with support.					
	How does it move? What can our hands do?					
3	What are flowers for? Do plants have legs? - not done yet					
4	Can record, measure, include ICT and uses of different charts to record results that have been created from a test Did the Romans use toilet					
	roll?					
5	Can record observations and measurements systematically. Can begin to choose the best method,					
	e.g. scientific diagrams, classification keys, tables, bar and line graphs, repeated tests and averaging (mean) - How do mealworms reproduce?					
	Can, where appropriate, present data as bar charts and line graphs. Can construct bar and line graphs, selecting scale and labelling axes. Can					
	begin to interpret and systematically explain patterns in data.					
6	Can select the appropriate way of presenting results – Why do birds have different beaks? How does blood flow? What can your heart rate tell					
	you? Can interpret and explain patterns in data – How does inheritance work? Can you see through it? Why do birds have different beaks?					
	Drawing conclusions					
FS	With adult support I can talk about what happened and why it might have happened.					
1	Can talk about what happened, communicating their findings in a simple way, e.g. talk, drawing, simple charts. What is on your wellies?					

2	Can explain what happened and relate this to their earlier prediction made.						
	What does friction do? What can you remember? What is camouflage for?						
3	Are mushrooms deadly? What are sunglasses for? Why do shadows change? What are flowers for? Do plants have legs? Why are trees tall? -						
	not done yet.						
4	Can begin to relate conclusions to patterns in data and to prior scientific knowledge and understanding. Can explain conclusions using						
	appropriate scientific language – What is sand?						
5	Can draw conclusions which are consistent with evidence and relate these to scientific knowledge and understanding. Can use appropriate						
	scientific language and conventions to communicate quantitative and qualitative data Why does a compass always point North?						
6	Can draw clear conclusions, which are linked to evidence from data patterns and relate these to topic-specific knowledge. VIPERS link.						
	Can use accurate scientific language to communicate quantitively/qualitative data and explain causal relationships – What can your heart rate						
	tell you?						
	Reviewing the test						
FS	With adult support I can identify parts of a test that worked and what did not.						
1	1. Can identify which parts of the test have been done well and which need to be improved. Can seeds grow anywhere?						
2	Can question how carefully a test has been carried out and what needs improving.						
	What does friction do? How does it feel? Which stuff is stickier?						
3							
3	Is it safe to eat? Are mushrooms deadly?						
4	Is it safe to eat? Are mushrooms deadly? Can suggest improvements to a test and give reasons why – What is a catapult?						
4	Can suggest improvements to a test and give reasons why – What is a catapult?						

<mark>Autumn Term</mark>

Spring Term

Summer Term

EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Ask simple questions	Ask simple questions	Ask relevant	Ask relevant	Plan different types	Plan different types
	and recognise that	and recognise that	questions and use	questions and use an	of scientific enquiries	of scientific enquiries
	they can be answered	they can be answered	different types of	understanding of	to answer questions,	to answer their own
	in different ways	in different ways	scientific enquiries to	different types of	including recognising	or others' questions,
		including use of	answer them	scientific enquiries to	and controlling	including recognising
	Use simple	scientific language		best answer them	variables where	and controlling
	equipment top	from the national	Set up simple		necessary	variables where
	observe closely	curriculum	practical enquiries,	Set up simple		necessary
			comparative and fair	practical enquiries,	Take measurements,	
	Perform simple tests	Use simple	tests	comparative and fair	using a range of	Take measurements,
		equipment to		tests	scientific equipment,	using a range of
	Identify and classify	observe closely	Make systematic and		with increasing	scientific equipment,
		including changes	careful observations	Make systematic and	accuracy and	with increasing
	Use his/her	over time	using equipment	careful observations	precision, taking	accuracy and
	observations and		where appropriate	and where	repeat readings when	precision, taking
	ideas to suggest	Perform simple		appropriate, take	appropriate	repeat readings when
	answers to questions	comparative tests	Gather, record,	accurate	Description and	appropriate
		Identific encourses and	classify and present	measurements using	Record data and	Descuel data and
	Gather and record	Identify, group and	data in a variety of	standard units, using	results of increasing	Record data and results of increasing
	data to help in	classify	ways	a range of equipment	complexity using	Ŭ
	answering questions	Use his/her	Record findings using	including thermometers and	scientific diagrams and labels,	complexity using scientific diagrams
		observations and	simple scientific	data loggers	classification keys,	and labels,
		ideas to suggest	language presented		tables, scatter graphs,	classification keys,
		answers to questions	in different ways	Gather, record,	bar and line graphs	tables, scatter graphs,
		noticing similarities,	in amercine ways	classify and present		bar and line graphs
		differences and	Report on findings	data in a variety of	Use test results to	bui una inte Brapilo
		patterns	from enquiries,	ways to help in	make predictions to	Use test results to
		P	including oral and	answering questions	set up further	make predictions to
		Gather and record	written explanations	01	comparative and fair	set up further
		data to help in	displays or	Record findings using	tests	comparative and fair
		answering questions	presentations of	simple scientific		tests
		including from	results and	language, drawings,	Report and present	
		secondary sources of	conclusions	labelled diagrams,	findings from	Use test results to
		information		keys, bar charts, and	enquiries, including	make predictions to
			Use results to draw	tables	conclusions, casual	set up further
			simple conclusions,		relationships and	comparative and fair
			make predictions for	Report on findings	explanations of and	tests
			new values, suggest	from enquiries,	degree of trust in	
			improvements and	including oral and	results, in oral and	Report and present
				written explanations	written forms such as	findings from

raise further	displays or	displays and other	enquiries, including
questions	presentations of	presentations	conclusions, casual
	results and		relationships and
Identify differences,	conclusions	Identify scientific	explanations of and
similarities or		evidence that has	degree of trust in
changes related to	Use results to draw	been used to support	results, in oral and
simple scientific ideas	simple conclusions,	or refute ideas or	written forms such as
and processes	make predictions for	arguments	displays and other
	new values, suggest		presentations
Use straightforward	improvements and		
scientific evidence to	raise further		Identify scientific
answer questions or	questions		evidence that has
to support his/her			been used to support
findings	Identify differences,		or refute ideas or
	similarities or		arguments
	changes related to		
	simple scientific ideas		
	and processes		
	Use straightforward		
	scientific evidence to		
	answer questions or		
	to support his/her		
	findings		